72 编辑距离

本文最后更新于:2022年4月9日 中午

给你两个单词 word1word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

示例 1:

1
2
3
4
5
6
输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')

示例 2:

1
2
3
4
5
6
7
8
输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')

提示:

  • 0 <= word1.length, word2.length <= 500
  • word1word2 由小写英文字母组成

Solution

参考:《算法小抄》2.6、代码随想录

  • 递归,开销大,超时
  • 框架
1
2
3
4
5
6
7
8
if s1[i] == s2[j]:
啥都别做(skip)
i, j 同时向前移动
else:
三选一:
插入(insert)
删除(delete)
替换(replace)

code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# @lc code=start
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
def dp(i, j):
if i==-1: return j+1
if j==-1: return i+1

if word1[i]==word2[j]:
return dp(i-1, j-1)
else:
return min(
dp(i, j-1)+1, dp(i-1,j)+1, dp(i-1,j-1)+1
)
return dp(len(word1)-1, len(word2)-1)
# @lc code=end
  • dp table
  • dp[i] [j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2的最近编辑距离
dp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
len1, len2 = len(word1), len(word2)
dp = [[0 for _ in range(len2+1)] for _ in range(len1+1)]
for i in range(len1+1):
dp[i][0] = i
for j in range(len2+1):
dp[0][j] = j

for i in range(1, len1+1):
for j in range(1, len2+1):
if word1[i-1]==word2[j-1]:
dp[i][j]=dp[i-1][j-1]
else:
dp[i][j]=min(
dp[i][j-1]+1, dp[i-1][j]+1, dp[i-1][j-1]+1
)
return dp[-1][-1]

cpp

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
public:
int minDistance(string word1, string word2) {
int n1 = word1.size(), n2 = word2.size();

vector<vector<int>> dp(n1+1, vector<int>(n2+1, 0));
for (int i = 0; i <= n1; ++i) dp[i][0] = i;
for (int j = 0; j <= n2; ++j) dp[0][j] = j;

for (int i = 1; i <= n1; ++i) {
for (int j = 1; j <= n2; ++j) {
if (word1[i-1] == word2[j-1]) {
dp[i][j] = dp[i-1][j-1];
} else {
dp[i][j] = min({dp[i-1][j], dp[i][j-1], dp[i-1][j-1]}) + 1;
}
}
}
return dp[n1][n2];
}
};

本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!