146 LRU 缓存机制

本文最后更新于:2020年12月23日 下午

运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制

实现 LRUCache 类:

  • LRUCache(int capacity) 以正整数作为容量 capacity 初始化 LRU 缓存
  • int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1
  • void put(int key, int value) 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字-值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。

进阶:你是否可以在 O(1) 时间复杂度内完成这两种操作?

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
输入
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]

解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4

提示:

  • 1 <= capacity <= 3000
  • 0 <= key <= 3000
  • 0 <= value <= 104
  • 最多调用 3 * 104getput

Solution

参考题解思路:LeetCode官方

  • 哈希表 + 双向链表
  • 双向链表按照被使用的顺序存储了这些键值对,靠近头部的键值对是最近使用的,而靠近尾部的键值对是最久未使用的。
  • 哈希表即为普通的哈希映射(HashMap),通过缓存数据的键映射到其在双向链表中的位置。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
class DLinkedNode:
def __init__(self, key=0, value=0):
self.key = key
self.value = value
self.prev = None
self.next = None


class LRUCache:

def __init__(self, capacity: int):
self.cache = dict()
# 使用伪头部和伪尾部节点
self.head = DLinkedNode()
self.tail = DLinkedNode()
self.head.next = self.tail
self.tail.prev = self.head
self.capacity = capacity
self.size = 0

def get(self, key: int) -> int:
if key not in self.cache:
return -1
# 如果 key 存在,先通过哈希表定位,再移到头部
node = self.cache[key]
self.moveToHead(node)
return node.value

def put(self, key: int, value: int) -> None:
if key not in self.cache:
# 如果 key 不存在,创建一个新的节点
node = DLinkedNode(key, value)
# 添加进哈希表
self.cache[key] = node
# 添加至双向链表的头部
self.addToHead(node)
self.size += 1
if self.size > self.capacity:
# 如果超出容量,删除双向链表的尾部节点
removed = self.removeTail()
# 删除哈希表中对应的项
self.cache.pop(removed.key)
self.size -= 1
else:
# 如果 key 存在,先通过哈希表定位,再修改 value,并移到头部
node = self.cache[key]
node.value = value
self.moveToHead(node)

def addToHead(self, node):
node.prev = self.head
node.next = self.head.next
self.head.next.prev = node
self.head.next = node

def removeNode(self, node):
node.prev.next = node.next
node.next.prev = node.prev

def moveToHead(self, node):
self.removeNode(node)
self.addToHead(node)

def removeTail(self):
node = self.tail.prev
self.removeNode(node)
return node

本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!