77 组合

本文最后更新于:2022年9月24日 凌晨

给定两个整数 nk,返回 1 … n 中所有可能的 k 个数的组合。

示例:

1
2
3
4
5
6
7
8
9
10
输入: n = 4, k = 2
输出:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]

Solution

参考:《算法小抄》4.1 、[78 子集](78 子集.md)

  • 回溯法

img

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# @lc code=start
class Solution:
def combine(self, n: int, k: int) -> List[List[int]]:
if n<=0 or k<=0: return
res = []
tarck = []
def backtrack(n, k, start, tarck):
if k==len(tarck):
res.append(tarck[:])
for i in range(start, n+1):
tarck.append(i)
backtrack(n, k, i+1, tarck)
tarck.pop()
backtrack(n, k, 1, tarck)
return res
# @lc code=end

cpp

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
// @lc code=start
class Solution {
private:
vector<vector<int>> res;

void dfs(int n, int k, int start, vector<int>& cur){
if(cur.size()==k){
res.push_back(cur);
return;
}

for(int i=start; i<=n; ++i){
cur.push_back(i);
dfs(n, k, i+1, cur);
cur.pop_back();
}
return;
}

public:
vector<vector<int>> combine(int n, int k) {
res.clear();
if(n<=0 || k<=0 || k>n)
return res;

vector<int> cur;
dfs(n, k, 1, cur);
return res;
}
};
// @lc code=end
图片
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Solution {
private:
vector<vector<int>> res;

void dfs(int n, int k, int start, vector<int>& cur){
if(cur.size()==k){
res.push_back(cur);
return;
}

for(int i=start; i<=n-(k-cur.size())+1; ++i){
cur.push_back(i);
dfs(n, k, i+1, cur);
cur.pop_back();
}
return;
}

public:
vector<vector<int>> combine(int n, int k) {
res.clear();
if(n<=0 || k<=0 || k>n)
return res;

vector<int> cur;
dfs(n, k, 1, cur);
return res;
}
};

java

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
List<List<Integer>> result;
List<Integer> path;

public List<List<Integer>> combine(int n, int k) {
result = new ArrayList<>();
path = new ArrayList<>();
backtrack(n, k, 1);
return result;
}

private void backtrack(int n, int k, int start) {
if (path.size() == k) {
// 这里一定要采用深拷贝
result.add(new ArrayList<>(path));
return;
}
for (int i = start; i <= n - (k - path.size()) + 1; ++i) {
path.add(i);
backtrack(n, k, i + 1);
path.remove(path.size() - 1);
}
}
}

本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!