本文最后更新于:2022年4月9日 中午
在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i]
升。
你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i]
升。你从其中的一个加油站出发,开始时油箱为空。
如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
说明:
- 如果题目有解,该答案即为唯一答案。
- 输入数组均为非空数组,且长度相同。
- 输入数组中的元素均为非负数。
示例 1:
| 输入: gas = [1,2,3,4,5] cost = [3,4,5,1,2]
输出: 3
解释: 从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油 开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油 开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油 开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油 开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油 开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。 因此,3 可为起始索引。
|
示例 2:
| 输入: gas = [2,3,4] cost = [3,4,3]
输出: -1
解释: 你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。 我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油 开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油 开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油 你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。 因此,无论怎样,你都不可能绕环路行驶一周。
|
Solution
参考 代码随想录
- 暴力法
- 遍历每一个加油站为起点的情况,模拟一圈
- 模拟跑一圈的过程其实比较考验代码技巧的,要对while使用的很熟练。
| class Solution { public: int canCompleteCircuit(vector<int>& gas, vector<int>& cost) { for (int i = 0; i < cost.size(); i++) { int rest = gas[i] - cost[i]; int index = (i + 1) % cost.size(); while (rest > 0 && index != i) { rest += gas[index] - cost[index]; index = (index + 1) % cost.size(); } if (rest >= 0 && index == i) return i; } return -1; } };
|
贪心算法
首先如果总油量减去总消耗大于等于零那么一定可以跑完一圈,说明 各个站点的加油站 剩油量rest[i]相加一定是大于等于零的。
每个加油站的剩余量rest[i]为gas[i] - cost[i]。
i从0开始累加rest[i],和记为curSum,一旦curSum小于零,说明[0, i]区间都不能作为起始位置,起始位置从i+1算起,再从0计算curSum。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
| class Solution { public: int canCompleteCircuit(vector<int>& gas, vector<int>& cost) { int curSum = 0; int totalSum = 0; int start = 0; for (int i = 0; i < gas.size(); ++i) { curSum += gas[i] - cost[i]; totalSum += gas[i] - cost[i]; if (curSum < 0) { start = i + 1; curSum = 0; } } if (totalSum < 0) return -1; return start; } };
|